mineral ne demek?

Mineral doğal şekilde oluşan, homojen, belirli kimyasal bileşime sahip inorganik kristalleşmiş katı bir maddedir. Buna göre minerallerin özelliklerini şöyle sıralayabiliriz:

  1. Doğal olarak oluşur.
  2. Herhangi bir parçası bütününün özelliklerini taşır.
  3. Belirli bir kimyasal formülü vardır.
  4. Katı halde olup nadiren sıvıdır.
  5. İnorganiktir.

Mineralojinin konusu doğal şekilde oluşan maddeleri ihtiva ettiği için bu bakımdan sınırlandırılmıştır. Teknolojinin ilerlemesiyle laboratuvarlarda sentetik olarak elde edilen kimyasal bileşikler mineral sayılmazlar. Bu yapay bileşikler halindeki katı maddelere doğada tabii halde rastlanmaz. Dolayısıyla da doğal şartlarda oluşturulamazlar. Bu tür katı maddelere "yapay mineraller" adı verilebilir. Yapay mineraller de tabii minerallerde olduğu gibi benzer kristal iç yapılarına sahiptir.

Minerallerin doğada veya deneysel olarak yapılan incelemelerde de gözlendiği gibi, oluşum şartları bunların belirli fizikokimyasal şartlarda (belirli sıcaklık ve basınç altında ve ortamın kimyasal durumu gibi) oluşurlar. Buradan mineralojinin bir amacının da minerallerin oluşturduğu yerkabuğunun kimyasal ve fiziksel yapısının öğrenilmesi, yerkabuğunun tarihinin bilinmesi ve yer altı kaynaklarından yararlanılması olduğunu anlıyoruz.

Mineraller belirli bir kimyasal bileşime sahiptirler. Her mineral ayrı bir kimyasal formül ile ifade edilir. Minerallerin kimyasal formülleri genellikle sabittir. Ancak belirli sınırlar içinde belirli kaidelerle değişebilir. Çok ender olarak saf elementler (altın, gümüş, bakır vs) şeklinde oluşan mineraller, yerkabuğunda meydana gelen doğal fizikokimyasal olayların ürünleridir.

Minerallerin bir diğer özelliği de inorganik oluşudur. Yerkabuğunda bulunan petrol, kömür, fosil ve reçine gibi maddeler mineralojinin kapsamına girmez. Ancak nadir de olsa kehribar gibi organik mineraller de vardır.

Minerallerin katı olmaları düzenli atomsal iç yapılı olduklarını gösterir. Mineral kristallerinin dış yapıları incelendiğinde düzgün geometrik dış şekilli oldukları görülür. Yine aynı şekilde iç yapılarının da düzgün olduğu görülür. Minerallerin "cıva" gibi sıvı olan tipleri de vardır.

Mineraller homojen yapılıdır. Alınan bir mineral örneğinin her tarafı aynı mineralden ibaret olmalıdır. Ancak her mineralde az veya çok yabancı mineral varlığı bulunur. Yabancı madde oranının çokluğu, mineralin özelliklerini değiştirir. Esasta; gözle görülebilen boyutta homojen olması basit tanımlama için yeterlidir.

Tanım

Temel tanım

Mineralin tanımı aşağıdaki kriterleri içerir:1

  1. Doğal bir süreçle oluşur.(Antropojenik bileşenler hariç tutulur)
  2. Oda sıcaklığında kararlı, ya da yarı kararlıdır.(25 °C). En basit mantıkla, bu mineralin katı olması gerektiği anlamına gelir. Bu istisnaların en klasik örnekleri, −39 °C'de kristalleşen civa, ve sadece 0 °C'de katılaşan buzdur. Çünkü bu iki mineral 1959'dan önce tanımlanmıştır. Bunlar Uluslararası Mineraloji Ortaklığı(IMA) 23 tarafından muaf tutulmuşlardır. Modern ilerlemeler mineralojiyi de içeren kapsamlı sıvı kristal çalışmalarını da içerir.
  3. Kimyasal bir formül tarafından temsil edilir. Mineraller kimyasal bileşenlerdir, ve bu bağlamda belli ya da değişken bir formülle tanımlanabilirler. Birçok mineral grupları ve türleri, katı çözümlerden oluşmaktadır: saf maddeler, kimyasal karışma ya da pislenme sebebiyle genellikle bulunmaz. Örneğin, olivin formülü katı bir, iki minal türü olan değişken bir formülle (Mg, Fe)<sub>2</sub>SiO<sub>4</sub>, tanımlanmıştır. (Belirli bir kimyasal formülle tanımlanan magnezyum zengin forsteritik olivin ve demir zengin fayalit)
  4. Düzenli atomik bir diziliştedir. Bu genelde kristalleşme anlamına gelir; ancak kristaller aynı zamanda periodiktir. Bu yüzden daha geniş kriterler kullanılır.4 Düzenli atomik diziliş, çeşit çeşit makroskopik fiziksel özellikler ortaya çıkartır. Örneğin, kristal hal, sertlik ve yarılma.5
  5. Genellikle abiojeniktir(yaşayan organizmaların hareketlerinin sonucu olmayan). Biojenik maddeler özellikle UMO tarafından hariç tutulmuştur. "Biyojenik maddeler, jeolojik bir bileşen olmaksızın tamamen biyolojik süreçlerle üretilen kimyasal bileşiklerdir (örneğin, idrar taşları, bitki dokularındaki oksalat kristalleri, deniz yumuşakçalarının kabukları, vb.).) ve mineral olarak kabul edilmez. Bununla birlikte, bileşiğin oluşumunda jeolojik süreçler yer aldıysa, ürün bir mineral olarak kabul edilebilir."

İlk üç genel özellik son ikiliden daha az tartışılmaktadır.6

Son gelişmeler

Mineral sınıflandırma şemaları ve tanımları mineral bilimindeki son gelişmelere uymak için evrilmektedir. Son değişiklikler hem Dana hem Stunz sınıflandırma şemalarında organik bir sınıfın eklenmesini içermektedir.

Organik sınıf, hidrokarbonlu nadir mineral grubunu içerir. IMA Yeni Mineraller Komisyonu ve "Mineral İsimler" 2009'da hiyerarşik bir şema kabul etmiştir. Yedi komisyon ve bu konuda çalışan dört grup yayımlanmış isimleriyle resmi şekilde listelemek üzere kurulmuştur. Bu yeni kurallara göre, " mineral türleri, kimya, kristal yapısı, oluşumu, birlikteliği, genetik tarihi veya kaynağı temel alınarak farklı şekillerde gruplandırılabilirler.78 Örneğin, amacına dayanarak sınıflandırma yapılabilir."

Ernest Nickel'in (1995) biyojenik maddelerin dışlanması evrensel olarak uygulanmamıştır. Örneğin Lowenstam (1981), "organizmaların, bazıları biyosferde inorganik olarak oluşturulamayan çeşitli bir mineral dizisi oluşturabildiğini belirtti."ayrım, bir sınıflandırma meselesidir ve minerallerin bileşenleri ile daha az ilgilidir.9 Skinner (2005) tüm katıları potansiyel mineraller olarak görür ve mineral krallığında, organizmaların metabolik aktiviteleri tarafından yaratılan biyomateryalleri içerir. Skinner, bir mineral olarak "biyojeokimyasal süreçlerle oluşan amorf veya kristalli element veya bileşiği" bir mineral olarak sınıflandırmak için önceki mineral tanımını genişletti.10

Yüksek çözünürlüklü genetik ve X-ışını absorpsiyon spektroskopisi son gelişmeler nikel (1995) biyojenik mineral dışlama eskimiş ve Skinner (2005) biyojenik mineral dahil bir zorunluluk yapabilir mikroorganizmalar ve mineraller arasındaki biyojeokimyasal ilişkiler üzerinde bilgi sağlamaktadır.1112 örneğin, IMA tarafından görevlendirilen "çevresel mineraloji ve Jeokimya Çalışma Grubu" hidrosfer, atmosfer ve biyosferdeki minerallerle ilgilenir grubun kapsamı mineral oluşturan mikroorganizmaları içerir, deniz tabanının en az 1600 metre altında ve stratosfere 70 kilometre (muhtemelen mezosfere giren) derinliklerine kadar dünyayı kapsayan neredeyse her kaya, toprak ve parçacık yüzeyinde var olan biyojeokimyasal döngüler milyarlarca yıldır minerallerin oluşumuna katkıda bulunmuştur.13

Mikroorganizmalar metalleri çözeltiden çökeltebilir ve cevher yataklarının oluşumuna katkıda bulunur.141516 Ayrıca minerallerin çözünmesini katalize edebilirler.171819

UMO'nun listelemesinden önce 60'ın üstünde biomineral keşfedilmiş, isimlendirilmiş ve yayımlanmıştı.20 Bu mineraller, Skinner'ın tanımına göre düzgün mineraller olarak tanımlanmıştır.21 Bu biomineraller, UMO'nun resmi mineral listesinde geçmemektedir22 ancak bu mineral temsilcilerin birçoğu Dana'nın sınıflandırma şemasında23 78 mineral sınıfı arasında paylaştırılmıştır. Diğer nadir bir mineral sınıfı (öncelikle biolojik kökenli) hem sıvı hem kristal özelliklere sahip sıvı kristal mineralleri da içermektedir. Bugüne kadar 80.000'in üzerinde sıvı kristal bileşeni tanımlanmıştır.2425

Skinner'ın mineral tanımı, minerallerin kristal halde ya da amorf şekilde olmasını göz önüne alarak incelenmesi üzerinedir26.(Sıvı kristaller amorf şekilde olanlara dahildir). Biomineraller ve sıvı mineraller en yayın mineral hali olmasa bile, düzgün mineralin oluşumundaki limiti tanımlamamızda bize yardımcı olur.27 Nickel'in resmi tanımı bir şeyin mineral olarak tanımlanmasını kristalliğine bağlı olduğunu özellikle belirtmiştir.

Kayalar, cevherler, mücevherler

Mineraller kayalara eşdeğer değildir. Taş birden fazla mineralin ya da mineraloidin bütünüdür28. Kireçtaşı veya kuvarsit gibi bazı kayaçlar, öncelikle kireçtaşı durumunda mineral – kalsit veya aragonit ve ikinci durumda kuvarstan oluşur.2930 Diğer kayalar temel minerallerin göreceli bollukları ile tanımlanabilir; granit kuvars, alkali feldispat ve plajiyoklaz feldispat oranları ile tanımlanır31. Diğer bazı taşlar ise oluşturan minerallerden çoğunlukta olan ile tanımlanır. Mesela granit, kuvarslar, alkali feldispat, ve plajiyoklasların birleşiminden oluşur. Taşlar aynı zamanda bütünüyle mineral olmayan malzemelerden oluşabilir; örneğin kömür genel olarak organik kökenli karbonun oluşturduğu bir tortuldur.3233

Taşlarda, bazı mineral grupları ve türleri diğerlerinden daha çoktur. bunlara taş-oluşturan mineraller adı verilir. Bunun en önemli örnekleri kuvarslar, feldispatlar, piroksenler, amfiboleler, kalsitler ve mikalardır. Kalsitler harici bütün bu mineraller silikattır.34 Toplamda 150 mineral, bolluğu ya da toplanması bağlamında estetik değeri gözetilmeden önemli kabul edilir.35

Ticari olarak değerli kabul edilen mineraller endüstriyel kabul edilir. Örneğin muskovit ve beyaz mika pencerelerde dolgu ve yalıtkan maddesi olarak kullanılabilir.36

Cevherler, belirli bir elementin tipik olarak metalin yüksek konsantrasyonuna sahip minerallerdir. Örnekleri cinnabar (HgS), cıva cevheri sfalerit (ZnS), çinko cevheri veya kalay cevheri olan kasiterittir (SnO<sub>2</sub>).

Değerli taşlar süs değeri olan minerallerdir ve güzelliği, dayanıklılığı ve nadirlikleri değersiz taşlardan ayrılırlar. En yaygın değerli taşların yaklaşık 35'ini oluşturan mücevher mineralleri olarak nitelendirilen yaklaşık 20 mineral türü vardır. Mücevher mineralleri genellikle birkaç çeşitte bulunur ve bu nedenle bir mineral birkaç farklı değerli taşı oluşturabilir, örneğin yakut ve safir hem korendon, hem de Al<sub>2</sub>O<sub>3</sub>'tür.37

İsimlendirme ve sınıflandırma

Mineraller artan genellik sırasına göre çeşitliliğe, türe, seriye ve gruba göre sınıflandırılır. Temel tanım seviyesi, her biri diğerlerinden benzersiz kimyasal ve fiziksel özelliklerle ayırt edilen mineral türleridir. Örneğin kuvars SiO<sub>2</sub> formülü ile ve onu aynı kimyasal formülle (polimorflar olarak adlandırılır) diğer minerallerden ayıran özel bir kristal yapısı ile tanımlanır. İki mineral türü arasında bir bileşim aralığı olduğunda, bir mineral serisi tanımlanır. Örneğin biyotit serisi, uç elemanların değişken miktarları filogopit, siderofilite,annite ve doğutonit ile temsil edilir. Buna karşılık mineral grubu, kristal yapıyı paylaşan bazı ortak kimyasal özellikleri olan bir mineral türü grubudur. Piroksen grubu genel olarak XY(Si,Al)<sub>2</sub>O<sub>6</sub> formüllüdür ki burada X ve Y her ikisi de katyondur ve X genelde Y'den büyüktür; piroksenler, ortorombik veya monoklinik kristal sistemlerinde kristalleşen tek zincirli silikatlardır.

Bir başka mineral çeşidi ise renk veya kristal yapısı gibi bazı fiziksel özelliklere göre farklılık gösteren belirli mineral türüdür. Örneğin mor kuvars ametis bunların bir çeşitidir.38

Dana ve Strunz, iki ortak sınıflandırması mineraller için kullanılır; her ikisi de özellikle önemli kimyasal gruplar ve yapı bakımından bir bileşime dayanır. 1837 yılında zamanının önde gelen jeoloğu James Dwight Dana ilk olarak Mineraloji Sistemini yayınlamış olup 1997 itibarıyla bu sistem sekizinci baskısını yapmıştır. Dana sınıflandırması mineral türüne dört bölümlü bir sayı atar. Sınıf numarası önemli kompozisyon gruplarına dayanır; tip, katyonların mineral içindeki anyonlara oranını verir ve son iki sayı mineralleri belirli bir tip veya sınıftaki yapısal benzerliğe göre gruplandırır.

Alman mineralog Karl Hugo Strunz için daha az kullanılan Strunz Sınıflandırması Dana sistemine dayanır ancak kimyasal bağların dağılımı ile ilgili olarak hem kimyasal hem de yapısal kriterleri birleştirir.39

Ocak 2020 itibarıyla 5,562 mineral türü IMA tarafından onaylanmıştır.40 En yaygın olarak bir kişinin adını alır, ardından keşif yeri gelir; kimyasal bileşime veya fiziksel özelliklere dayanan isimler mineral adı etimolojilerinin diğer iki ana grubudur.

"Türler" kelimesi (Latince türlerden , "farklı bir görünüme veya görünüme sahip belirli bir tür, tür veya tür") 41, Systema Naturae'deki Carl Linnaeus'un sınıflandırma şemasından kaynaklanır. linnaeus, doğal dünyayı üç krallığa (bitkiler, hayvanlar ve mineraller) ayırdı ve her birini aynı hiyerarşili olarak sınıflandırdı.42 Azalan düzende bunlar filum, sınıf, düzen, familya, kabile, cins ve türlerdi.

Madde yapısı

Minerallerin bolluk ve çeşitliliği doğrudan kimyaları tarafından kontrol edilir ki bu da yeryüzündeki element bolluğuna bağlıdır. Gözlenen minerallerin çoğunluğu yerkabuğundan elde edilir. Sekiz element, kabuktaki bolluğu nedeniyle minerallerin temel bileşenlerinin çoğunu oluşturur. Kabuk ağırlığının% 98'inden fazlasını oluşturan bu sekiz element azalan bolluk sırasıyla şunlardır: oksijen, silikon, alüminyum, demir, magnezyum, kalsiyum, sodyum ve potasyum. Oksijen ve silikon en önemli iki maddedir - oksijen kabuğun ağırlığının % 47'sini silikon ise % 28'ini oluşturur.43

Oluşan mineraller, ana gövdenin kütle kimyasının dayattığı sınırlar dahilinde, oluşum sıcaklığı ve basıncında en kararlı olanlardır.44 Örneğin, demir ve magnezyum açısından zengin bir magma, olivin ve piroksenler gibi mafik mineraller; aksine, daha silika açısından zengin bir magma, feldispatlar ve kuvars gibi daha fazla Si02 içeren mineraller oluşturmak için kristalleşir. Kireçtaşı, kalsit veya aragonitte (her ikisi de CaCO<sub>3</sub> kaya kalsiyum ve karbonat açısından zengin olduğu için) oluşturur. Bir mineral kimyası toplu mineraller dışında verilen bir mineral toplu kimyası benzer olmayan bir kaya buldu olmayacak bir sonucudur. Örneğin kiyanit, Al <sub>2</sub> SiO <sub>5</sub> alüminyum açısından zengin şeylerin metamorfizminden formlar ; muhtemelen kuvarsit gibi alüminyum açısından fakir kayalarda meydana gelmez .

Kimyasal bileşim, katı çözelti serisinin son üye türleri arasında değişebilir. Örneğin plajiyoklaz feldispatlar, sodyum bakımından zengin son üye albitten (NaAlSi<sub>3</sub>O<sub>8</sub>) kalsiyum bakımından zengin anortite (CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub>), aralarında dört tanınmış ara çeşidi olan (sodyumdan kalsiyum açısından zengin): oligoklaz, andesin, labradorit ve bytownite serinin diğer örnekleri arasında magnezyum bakımından zengin forsterit ve demir bakımından zengin fayalit olivin serisi ve manganez bakımından zengin hübnerit ve demir bakımından zengin ferberit wolframit serisi bulunur.

Koordinasyon polyhedra, bir katyonun bir anyonla nasıl çevrildiğinin geometrik temsilleridir. Mineralojide, koordinasyon polyhedra genellikle kabuktaki bolluğu nedeniyle oksijen açısından düşünülür. Silikat minerallerinin ana birimi, dört O<sup>2−</sup> çevrelenmiş bir Si4 + olan silika tetrahedrondur. Silikatın koordinasyonunu tanımlamanın alternatif bir yolu bir sayıdır: silika tetrahedron durumunda, silikonun 4'lük bir koordinasyon sayısına sahip olduğu söylenir. Çeşitli katyonlar belirli bir olası koordinasyon sayılarına sahiptir; silikon için, bileşiğin, silikonun oksijen ile altı kat (oktahedral) koordinasyonda olduğu şekilde sıkıştırıldığı çok yüksek basınçlı mineraller hariç, hemen hemen her zaman 4'tür. Daha büyük katyonlar, oksijene kıyasla göreceli boyuttaki artış nedeniyle daha büyük bir koordinasyon sayılarına sahiptir (daha ağır atomların son orbitalalt kabuğu da farklıdır). Koordinasyon sayılarındaki değişiklikler fiziksel ve mineralojik farklılıklara yol açar; örneğin, mantoda olduğu gibi yüksek basınçta, birçok mineral, özellikle olivin ve granat gibi silikatlar, silikonun oktahedral koordinasyonda olduğu bir perovskit yapısına dönüşecektir. Diğer örnekler, Al3 + 'nın koordinasyon sayısına göre farklılık gösteren alüminosilikatlar kiyanit, andalusit ve sillimanittir (polimorflar, çünkü Al2SiO5 formülünü paylaşırlar); bu mineraller basınç ve sıcaklık değişimlerine tepki olarak birbirlerinden geçiş yaparlar.45 Silikat malzemeler söz konusu olduğunda, Si4 + 'ün Al3 + ile ikamesi, yükleri dengeleme ihtiyacı nedeniyle çeşitli minerallere izin verir.4647

Sıcaklık ve basınç ve bileşimdeki değişiklikler kaya örneğinin mineralojisini değiştirir. Bileşimdeki değişiklikler, hava koşulları veya metasomatizma (hidrotermal alterasyon ) gibi işlemlerden kaynaklanabilir. Ana kaya farklı fiziksel rejimlere doğru tektonik veya magmatik hareket geçirdiğinde sıcaklık ve basınçtaki değişiklikler oluşur. Termodinamik değişiklikler koşullar, mineral topluluklarının yeni mineraller üretmek için birbirleriyle reaksiyona girmesini elverişli kılar; bu nedenle, iki kayanın benzer bir mineralojiye sahip olmadan aynı veya çok benzer bir toplu kaya kimyasına sahip olması mümkündür. Bu mineralojik değişim süreci kaya döngüsü ile ilgilidir. Mineral reaksiyon dizi örneği aşağıdaki gibidir.48

Ortoklaz feldispat (KAlSi 3 O 8), plütonik bir magmatik kayaç olan granitte yaygın olarak bulunan bir mineraldir. Hava şartlarına maruz kalıyorsunuz, bir tortul mineral ve silisik asit olan kaolinit (Al 2 Si 2 O 5 (OH) 4 oluşturmak için reaksiyona girer)

2 KAlSi<sub>3</sub>O<sub>8</sub> + 5 H<sub>2</sub>O + 2 H<sup>+</sup> → Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> + 4 H<sub>2</sub>SiO<sub>3</sub> + 2 K<sup>+</sup>

Düşük dereceli metamorfik koşullar altında, kaolinit, pirofilit (Al <sub>2</sub> Si <sub>4</sub> O <sub>10</sub> (OH) 2 oluşturmak için kuvars ile reaksiyona girer):

Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub> + SiO<sub>2</sub> → Al<sub>2</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2</sub> + H<sub>2</sub>O

Metamorfik derece arttıkça, pirofilit kiyanit ve kuvars oluşturmak için reaksiyona girer:

Al<sub>2</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2</sub> → Al<sub>2</sub>SiO<sub>5</sub> + 3 SiO<sub>2</sub> + H<sub>2</sub>O

Alternatif olarak bir mineral, reaksiyon yapmadan sıcaklık ve basınçtaki değişikliklerin bir sonucu olarak kristal yapısını değiştirebilir. Örneğin kuvars, yüksek sıcaklıklarda tridimit ve kristobalit ve yüksek basınçlarda koesit gibi çeşitli Si02 polimorflarına dönüşür. [56]

Fiziksel özellikler

Minerallerin sınıflandırılması basitten zora kadar değişir. Bir mineral birkaç fiziksel özellik ile tanımlanabilir, bazıları eşit konum olmadan tam tanımlama için yeterlidir.Diğer durumlarda, mineraller sadece daha karmaşık optik, kimyasal veya X-ışını kırınım analizi ile sınıflandırılabilir; bununla birlikte bu yöntemler maliyetli ve zaman alıcı olabilir.

Sınıflandırma için uygulanan fiziksel özellikler arasında kristal yapı ve alışkanlık, sertlik, parlaklık, şeffaflık, renk, çizgi, yarılma ve kırık ve özgül ağırlık yer alır. Diğer daha az genel testler arasında flüoresans, fosforesans, manyetizma, radyoaktivite, mukavemet (şekil veya formun mekanik kaynaklı değişikliklerine tepki), piezoelektriklik ve seyreltik asitlere reaktivite bulunmaktadır.

Kristal yapısı

Ana maddeler: Kristal sistemi ve kristal alışkanlığı

Ayrıca bakınız: Kristal eşleştirme Kristal yapı, mineralin iç yapısındaki atomların düzenli geometrik mekansal düzenlemesinden kaynaklanır. Bu kristal yapı, genellikle kristalin aldığı geometrik formda ifade edilen düzenli iç atomik veya iyonik düzenlemeye dayanır. Mineral taneleri görülemeyecek kadar küçük veya düzensiz şekilli olsa bile alttaki kristal yapı her zaman periyodiktir ve X-ışını kırınımı ile belirlenebilir.

Mineraller genelde simetri içerikleriyle tanımlanır. Kristaller, simetrileriyle farklılık gösteren 32 nokta grubu ile sınırlıdır. Bu gruplar sırayla daha geniş kategoriler halinde sınıflandırılır, bunlardan en geniş olanı altı kristal ailedir.

Bu aileler, üç kristalografik eksenin göreceli uzunlukları ve aralarındaki açılar ile tanımlanabilir; bu ilişkiler, daha dar nokta gruplarını tanımlayan simetri işlemlerine karşılık gelir. Bunlar aşağıda özetlenmiştir. A, b ve C eksenleri temsil eder ve α, β, γ, ilgili kristalografik eksenin karşısındaki açıyı temsil eder (örneğin α, a ekseninin karşısındaki açıdır, yani. B ve c eksenleri arasındaki açı)

Kristal AilesiUzunluklarıaçılarOrtak örnekler
İzometrika = b = cα = β = γ = 90 °Garnet, halit, pirit
Dörtgena = b ≠ cα = β = γ = 90 °Rutil, zirkon, andalusit
Ortorombika ≠ b ≠ cα = β = γ = 90 °Olivin, aragonit, ortopiroksenler
Altıgena = b ≠ cα = β = 90 °, γ = 120 °Kuvars, kalsit, turmalin
Monoklinika ≠ b ≠ cα = γ = 90 °, β ≠ 90 °Klinopiroksenler, ortoklaz, alçıtaşı
Trisika ≠ b ≠ cα ≠ β ≠ γ ≠ 90 °Anorthit, albit, siyanit

Altıgen kristal ailesi de iki kristal sisteme ayrılır - üç kat simetri eksenine sahip olan üçgen ve altı kat simetri eksenine sahip olan altıgen.

Mineral, kimyasal ve kristal yapısı birlikte tanımlanır. 32 nokta grubuna kısıtlama getirildiğinde, farklı kimyanın mineralleri aynı kristal yapıya sahip olabilir. Örneğin, halit (NaCl), galena (PbS) ve periklazın (MgO) hepsi, farklı bileşen elemanları arasında benzer bir stokiyometriye sahip oldukları için hekzaoktahedral nokta grubuna (izometrik aile) aittir. Aksine, polimorflar kimyasal bir formülü paylaşan ancak farklı bir yapıya sahip olan mineral gruplandırmasıdır. Örneğin, her iki demir sülfür olan pirit ve markazit, FeS<sub>2</sub> formülüne sahiptir; ancak birincisi izometrikken ikincisi ortorombiktir. Bu polimorfizm genel AX<sub>2</sub> formülü ile diğer sülfidlere uzanır; bu iki grup topluca pirit ve markazit grupları olarak bilinir.49

Polimorfizm saf simetri içeriğinin ötesine uzanabilir. Alüminosilikatlar, Al<sub>2</sub>SiO<sub>5</sub> kimyasal formülünü paylaşan üç mineral grubudur - kiyanit, andalusit ve sillimanit -. Kiyanit trisinikken, endülit ve sillimanit hem ortorombiktir hem de dipiramidal grup grubuna aittir. Bu farklılıklar, alüminyumun kristal yapı içinde nasıl koordine edildiğine bağlı olarak ortaya çıkar. Tüm minerallerde, bir alüminyum iyonu daima oksijenle altı kat koordinasyondadır. Silikon, genel bir kural olarak, tüm minerallerde dört kat koordinasyondadır; bir istisna stishovite (SiO2, rutil yapıya sahip ultra yüksek basınçlı bir kuvars polimorfu) gibi bir durumdur. [60] Kiyanitte, ikinci alüminyum altı kat koordinasyondadır; kimyasal formülü kristal yapısını yansıtmak için Al<sup>[6]</sup>Al<sup>[6]</sup>SiO<sub>5</sub>, olarak ifade edilebilir. Endülit beş kat koordinasyonda ikinci alüminyuma sahiptir (Al<sup>[6]</sup>Al<sup>[5]</sup>SiO<sub>5</sub>) ve sillimanit buna dört kat koordinasyonda (Al<sup>[6]</sup>Al<sup>[4]</sup>SiO<sub>5</sub>) sahiptir.50
Kristal yapı ve kimyadaki farklılıklar mineralin diğer fiziksel özelliklerini büyük ölçüde etkiler. Elmas ve grafit karbon allotropları çok farklı özelliklere sahiptir; elmas en sert doğal maddedir, adamantin parlaklığına sahiptir ve izometrik kristal ailesine aittir, oysa grafit çok yumuşaktır, yağlı bir parlaklığa sahiptir ve altıgen ailede kristalleşir. Bu fark, bağlanma farklılıklarından kaynaklanmaktadır. Elmasta, karbonlar sp3 hibrit orbitallerdedir, yani her bir karbonun dört yüzlü kombine bir tetrahedral tarzda kovalent olarak bağlandığı bir çerçeve oluştururlar; Öte yandan, grafit sp2 hibrit orbitallerindeki karbon tabakalarından oluşur, burada her karbon sadece üç tanesine kovalent olarak bağlanır. Bu tabakalar çok daha zayıf van der Waals kuvvetleri tarafından bir arada tutulur ve bu tutarsızlık büyük makroskopik farklılıklara neden olur.51

Eşleştirme, tek bir mineral türünün iki veya daha fazla kristalinin birleşimidir. Eşleştirmenin geometrisi mineralin simetrisi ile kontrol edilir. Sonuçta, temas ikizleri, ağsı ikizler, genleşmiş ikizler, penetrasyon ikizleri, siklik ikizler ve polisentetik ikizler dahil olmak üzere çeşitli ikizler vardır. Temas veya basit İkizler, bir düzlemde birleştirilen iki kristalden oluşur; bu tür eşleştirme spinel'de yaygındır. Ağlı İkizler, ortak rutil içinde, örgü benzeyen kristaller birbirine vardır. Geniküle edilmiş İkizler, ikizin başlamasından kaynaklanan ortada bir dönüşe sahiptir. Penetrasyon ikizleri, birbirine dönüşen İki tek kristalden oluşur; bu eşleştirme örnekleri çapraz şekilli staurolit içerir İkizler ve Carlsbad ortoklazda eşleştirme. Döngüsel ikizlere dönme ekseni etrafında tekrarlanan eşleştirme neden olur. Bu tür eşleştirme, üç, dört, beş, altı veya sekiz kat eksen etrafında gerçekleşir ve karşılık gelen desenlere threelings, fourlings, fivelings, sixlings ve eightlings denir. Altılı aragonit yaygındır. Polisentetik İkizler, tekrarlayan ikizlerin varlığı yoluyla döngüsel ikizlere benzer; bununla birlikte, dönme ekseni etrafında meydana gelmek yerine, polisentetik eşleştirme, genellikle mikroskobik ölçekte paralel düzlemler boyunca gerçekleşir.5253

Kristal alışkanlığı, kristalin genel şeklini ifade eder. Bu özelliği tanımlamak için çeşitli terimler kullanılır. Yaygın yapılar arasında natrolit, kanatlı, dendritik (doğal bakırda çok olan ağaç deseni) gibi iğne benzeri kristalleri tanımlayan asiküler, granat, prizmatik (bir yönde uzamış) ve sekanstan farklıdır. Birincisinin platili olma alışkanlığı, buna karşılık ikincisinin tanımlanmış uzaması vardır. Kristal form ile ilgili olarak, kristal yüzlerin kalitesi, özellikle bir petrografik mikroskopla, bazı minerallerin teşhisidir. Euhedral kristaller tanımlanmış bir dış şekle sahipken, anhedral kristaller yoktur; bu ara biçimlere subkedral denir.5455

Sertlik

Ana madde: Mohs mineral sertlik skalası

Bir mineralin sertliği, çizilmeye daha fazla ne kadar dayanabileceğini tanımlar. Bu fiziksel özellik, mineralin kimyasal bileşimi ve kristal yapısı ile kontrol edilir. Bu mineralin sertliği, yapısının bir fonksiyonu olan tüm taraflar için mutlaka sabit değildir; kristalografik zayıflık, bazı yönleri diğerlerinden daha yumuşak hale getirir.56

En yaygın ölçüm ölçeği ordinal Mohs sertlik ölçeğidir. Ön göstergeyle tanımlanan, daha yüksek bir endeksli mineral, altındakileri çizer. Ölçek talk, fillosilikat, elmas, en zor doğal malzeme olan karbon polimorfu arasında değişir. Ölçek aşağıdadır:57
{| class="wikitable sortable" !Mohs sertliği !Mineral !Kimyasal formül |- |1 |Talk |Mg<sub>3</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2</sub> |- |2 |Gypsum |CaSO<sub>4</sub>·2H<sub>2</sub>O |- |3 |Kalsit |CaCO<sub>3</sub> |- |4 |Flurit |CaF<sub>2</sub> |- |5 |Apatite |Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(OH,Cl,F) |- |6 |Orthoclase |KAlSi<sub>3</sub>O<sub>8</sub> |- |7 |Quartz |SiO<sub>2</sub> |- |8 |Topaz |Al<sub>2</sub>SiO<sub>4</sub>(OH,F)<sub>2</sub> |- |9 |Corundum |Al<sub>2</sub>O<sub>3</sub> |- |10 |Elmas |C |}

Parlaklık ve şeffaflık

Parlaklık, ışığın kalitesi ve yoğunluğu bakımından mineral yüzeyinden nasıl yansıdığını gösterir. Metalik ve metalik olmayan kategorilere ayrılan bu özelliği tanımlamak için kullanılan çok sayıda nitel terim vardır. Metalik ve altmetalik mineraller metal gibi yüksek yansıtma özelliğine sahiptir; bu parlaklığa sahip minerallerin örnekleri galena ve pirittir.

Metalik olmayan parlak mineraller şunlardır: elmas gibi adamantin; silikat minerallerinde çok yaygın olan camsı parlak vitreus; Talk ve apofilit gibi inci; granat grubunun üyeleri gibi reçineli; asbestiform krizotil gibi lifli minerallerde yaygın olan ipeksidir.58

Bir mineralin diyafanlığı, ışığın içinden geçme yeteneğini tanımlar. Şeffaf mineraller, içinden geçen ışığın yoğunluğunu azaltmaz. Şeffaf bir mineral örneği muskovittir (potasyum mika); bazı çeşitler pencereler için yeterince açıktır. Yarı saydam mineraller, bir miktar ışığın geçmesine izin verir, ancak şeffaf olanlardan daha azdır. Jadeit ve nefrit (yeşimin mineral formları bu özelliğe sahip minerallerin örnekleridir). Işığın geçmesine izin vermeyen minerallere opak denir.5960

Bir mineralin diyafanlığı, numunenin kalınlığına bağlıdır. Bir mineral yeterince ince olduğunda (örneğin, petrografi için ince bir kesitte), bu özellik bir el örneğinde görülmese bile şeffaf hale gelebilir. Buna karşılık, Hematit veya pirit gibi bazı mineraller ince kesitte bile opaktır.61

Renk ve Çizgi

Renk, bir mineralin en belirgin özelliği olup ancak genellikle tanı koymaz.62 Elektronlarla etkileşime giren elektromanyetik radyasyondan kaynaklanır. (Mineraller için geçerli olmayan akkor durum hariç).63 İki geniş element sınıfı (idiokromatik ve allochromatic), bir mineralin rengine katkıları ile tanımlanır: İdiokromatik elementler bir mineralin bileşimi için gereklidir; bir mineralin rengine katkıları tanısal.6465 Bu tür minerallerin örnekleri malakit (yeşil) ve azurittir (mavi). Buna karşılık, minerallerdeki allokromatik elementler, safsızlıklar olarak eser miktarlarda bulunur. Böyle bir mineralin bir örneği, mineral korundumun yakut ve Safir çeşitleri olacaktır.66 Psödokromatik minerallerin renkleri, ışık dalgalarının müdahalesinin sonucudur. Örnekler labradorit ve borniti içerir.

Basit vücut rengine ek olarak, mineraller renklerin oynanması, asterizm, chatoyancy, yanardönerlik, kararma ve pleokroizm gibi çeşitli ayırt edici optik özelliklere sahip olabilir. Bu özelliklerin bazıları renk değişkenliği içerir. Opal'de olduğu gibi renk oyunu, açıldığında farklı renkleri yansıtan örnekle sonuçlanır, pleokroizm ise ışık farklı bir yönde bir mineralden geçerken renk değişimini açıklar. Yanardönerlik, ışığın kristal yüzeyinde bir kaplamayı, bölünme düzlemlerini veya kimyada küçük geçişleri olan katmanları dağıttığı bir çeşit renk oyunudur.67 buna karşılık opal'deki renklerin oyunu, fiziksel yapısı içindeki sıralı mikroskobik silika kürelerinden ışığın kırılması nedeniyle oluşur.68 Chatoyancy ("kedi gözü"), numunenin döndürülmesiyle gözlenen dalgalı renk bantlamasıdır; asterizm, çeşitli chatoyancy, mineral tahıl üzerinde bir yıldızın görünümünü verir. İkinci özellik özellikle mücevher kalitesinde korundumda yaygındır.6970

Bir mineral çizgi ya da vücut rengi ile aynı olmayabilir toz halinde bir mineral rengini ifade eder.71 Bu özelliği test etmenin en yaygın yolu, porselenden yapılmış ve beyaz veya siyah renkli bir çizgi plakası ile yapılır. Mineralin çizgisi eser elementlerden bağımsızdır.72 Veya herhangi bir ayrışma yüzeyi.73 Bu özelliğin ortak bir örneği, el örneğinde siyah, gümüş veya kırmızı renkli, ancak kiraz kırmızısı ila kırmızımsı-kahverengi bir çizgi olan Hematit ile gösterilmiştir.74 Streak, vücut rengi allochromatic elementler tarafından oluşturulan metalik olmayan minerallerin aksine, metalik mineraller için daha belirgindir. Çizgi testi, mineralin sertliği ile sınırlıdır çünkü bunun yerine 7 tozdan daha sert olan çizgi plakası.75

Bölünme, ayrılık, kırılma ve azim;

Tanım olarak, mineraller karakteristik bir atomik düzenlemeye sahiptir. Bu kristal yapıdaki zayıflık zayıflık düzlemlerine neden olur ve bu düzlemler boyunca bir mineralin kırılması bölünme olarak adlandırılır. Bölünme kalitesi, mineralin ne kadar temiz ve kolay kırıldığına bağlı olarak tanımlanabilir; ortak tanımlayıcılar, azalan kalite sırasına göre, "mükemmel", "iyi", "farklı" ve "zayıf"dır. Özellikle şeffaf minerallerde veya ince kesitte, bölünme, yandan bakıldığında düzlemsel yüzeyleri işaretleyen bir dizi paralel çizgi olarak görülebilir. Bölünme mineraller arasında genel bir özellik değildir; örneğin, yoğun olarak birbirine bağlı silika tetrahedradan oluşan kuvars, parçalanmasına izin verecek kristalografik zayıflığa sahip değildir. Buna karşılık, mükemmel bazal bölünmeli mika, çok zayıf şekilde bir arada tutulan silika tetrahedra tabakalarından oluşur.7677

Bölünme kristalografinin bir fonksiyonu olduğundan, çeşitli bölünme türleri vardır. Bölünme tipik olarak bir, iki, üç, dört veya altı yönde gerçekleşir. Bir yönde bazal bölünme, mikaların ayırt edici bir özelliğidir. İki yönlü bölünme prizmatik olarak tanımlanır ve amfiboller ve piroksenler gibi minerallerde oluşur. Galena veya Halit gibi mineraller, 90° 'de üç yönde kübik (veya izometrik) bölünmeye sahiptir; üç bölünme yönü mevcut olduğunda, ancak kalsit veya rhodochrosite gibi 90°' de değil, rhombohedral bölünme olarak adlandırılır. Oktahedral bölünme (dört yön) florit ve elmasta bulunur ve sfalerit altı yönlü dodekahedral bölünmeye sahiptir.7879

Birçok bölünmeye sahip mineraller, tüm yönlerde eşit derecede iyi kırılmayabilir; örneğin, kalsit üç yönde iyi bölünmeye sahiptir, ancak alçı bir yönde mükemmel bölünmeye ve diğer iki yönde zayıf bölünmeye sahiptir. Bölünme düzlemleri arasındaki açılar mineraller arasında değişir. Örneğin, amfiboller çift zincirli silikatlar ve piroksenler tek zincirli silikatlar olduğundan, bölünme düzlemleri arasındaki açı farklıdır. Piroksenler yaklaşık 90° ' de iki yönde bölünürken, amfiboller yaklaşık 120° ve 60°ile ayrılmış iki yönde belirgin bir şekilde bölünürler. Bölünme açıları, bir iletkene benzer bir temas gonyometresi ile ölçülebilir.8081

Bazen "yanlış bölünme" olarak adlandırılan ayrılma, görünüşte bölünmeye benzer, ancak bunun yerine sistematik zayıflığın aksine mineraldeki yapısal kusurlar tarafından üretilir. Ayırma, mineralin kristalinden kristaline değişir, oysa atomik yapı bu özelliğe izin verirse, belirli bir mineralin tüm kristalleri parçalanır. Genelde, ayrılma kristale uygulanan streslerden kaynaklanır. Gerilme kaynakları arasında deformasyon (örneğin basınç artışı), ekssolüsyon veya eşleştirme bulunur. Genellikle ayrılık gösteren mineraller arasında piroksenler, Hematit, manyetit ve korundum bulunur.8283

Bir mineral bölünme düzlemine karşılık gelmez bir yönde kırıldığında, kırılmış olarak adlandırılır. Birkaç düzensiz kırık türü vardır. Klasik örnek, kuvars gibi konkoidal kırıktır; pürüzsüz kavisli çizgilerle işaretlenmiş yuvarlak yüzeyler oluşturulur. Bu tip kırık sadece çok homojen minerallerde oluşur. Diğer kırık türleri lifli, kıymık ve hackly'dir. İkincisi, kaba, pürüzlü bir yüzey boyunca bir kopmayı tanımlar; bu özelliğin bir örneği doğal bakırda bulunur.84

Mukavemet hem bölünme hem de kırılma ile ilgilidir. Kırılma ve bölünme, mineral kırıldığında oluşan yüzeyleri tanımlarken, mukavemet, mineralin bu kırılmaya ne kadar dirençli olduğunu açıklar. Mineraller kırılgan, sünek, dövülebilir, sekstil, esnek veya elastik olarak tanımlanabilir.85

Özgül Ağırlık

Özgül Ağırlık, bir mineralin yoğunluğunu sayısal olarak tanımlar. Yoğunluğun boyutları kütle birimlerle hacme bölünür: kg / m3 veya g/cm3. Özgül Ağırlık, bir mineral numunesinin ne kadar suyun yer değiştirdiğini ölçer. Numunenin kütlesinin bölümü ve havadaki numunenin ağırlığı ile Sudaki karşılık gelen ağırlığı arasındaki fark olarak tanımlanan Özgül Ağırlık, birimsiz bir orandır. Çoğu mineral arasında, bu özellik teşhis değildir. Kaya oluşturan mineraller-tipik olarak silikatlar veya bazen karbonatlar–2.5-3.5 özgül ağırlığına sahiptir.86

Yüksek Özgül Ağırlık, bir mineralin teşhis özelliğidir. Kimyada bir varyasyon (ve sonuç olarak, mineral sınıfı) özgül ağırlıktaki bir değişiklikle ilişkilidir. Daha yaygın mineraller arasında, oksitler ve sülfitler, daha yüksek atomik kütleye sahip elementleri içerdikleri için daha yüksek bir özgül ağırlığa sahip olma eğilimindedir. Bir genelleme, metalik veya adamantin parlaklığına sahip minerallerin, metalik olmayan bir parlaklığa sahip olanlardan daha yüksek özgül ağırlığa sahip olma eğiliminde olmasıdır. Örneğin, Hematit, Fe2O3, 5.2687 özgül ağırlığına sahipken, Galena, PbS, sırasıyla yüksek demir ve kurşun içeriğinin bir sonucu olan 7.2–7.6,88 özgül ağırlığına sahiptir. Yerli metallerde çok yüksek bir Özgül Ağırlık çok belirgin hale gelir; demir göktaşlarında yaygın olan bir demir-nikel alaşımı olan kamasit, 7.9 özgül ağırlığına sahiptir,89 ve altın 15 ile 19.3 arasında gözlenen bir özgül ağırlığa sahiptir.9091

Diğer özellikler

Mineralleri teşhis etmek için diğer özellikler kullanılabilir. Bunlar daha az geneldir ve belirli minerallere uygulanır.

Seyreltik asit (genellikle %10 HCl) bir mineral üzerine bırakarak, karbonatları diğer mineral sınıflarından ayırmaya yardımcı olur. Asit karbonat ([CO3]2−) grubu ile reaksiyona girer, bu da etkilenen bölgenin efervesce olmasına neden olur ve karbondioksit gazı verir. Bu test, minerali orijinal kristal formunda veya toz halinde test etmek için daha da genişletilebilir. Bu testin bir örneği, kalsiti dolomitten, özellikle kayaların içinde (sırasıyla kireçtaşı ve dolomit) ayırt ederken yapılır. Kalsit hemen asit içinde effervesces, asit ise toz Dolomite (genellikle bir kayadaki çizilmiş bir yüzeye), effervesce için uygulanmalıdır.92 zeolit mineralleri asit içinde efervesce olmaz; bunun yerine, 5-10 dakika sonra buzlu hale gelir ve bir gün boyunca asit içinde bırakılırsa, çözülür veya bir silika jel haline gelir.93

Test edildiğinde, manyetizma minerallerin çok göze çarpan bir özelliğidir. Yaygın mineraller arasında manyetit bu özelliği güçlü bir şekilde sergiler ve manyetizma da pirotit ve ilmenitte güçlü olmasa da mevcuttur.94 bazı mineraller elektriksel özellikler sergiler – örneğin kuvars piezoelektriktir - ancak elektriksel özellikler, eksik veriler ve doğal varyasyon nedeniyle mineraller için tanı kriterleri olarak nadiren kullanılır.95

Mineraller ayrıca tat veya koku için test edilebilir. Halit, NaCl, sofra tuzudur; potasyum taşıyan meslektaşı sylvite, belirgin bir acı tada sahiptir. Sülfitler, özellikle numuneler kırıldığı, reaksiyona girdiği veya toz haline getirildiği için karakteristik bir kokuya sahiptir.96

Radyoaktivite nadir bir özelliktir; mineraller radyoaktif elementlerden oluşabilir. Uraninit, autunite ve carnotite gibi uranyum veya iz safsızlıklar gibi tanımlayıcı bir bileşen olabilirler. İkinci durumda, radyoaktif bir elementin çürümesi mineral kristale zarar verir; radyoaktif bir halo veya pleokroik halo olarak adlandırılan sonuç, ince kesitli petrografi gibi çeşitli tekniklerle gözlemlenebilir.97

Sınıflandırma

Yerkabuğunun bileşimi silikon ve oksijenin hakim olduğu için, silikat elementleri Kaya oluşumu ve çeşitliliği açısından en önemli mineral sınıfıdır. Bununla birlikte; silikat olmayan mineraller, özellikle cevher olarak büyük ekonomik öneme sahiptir.9899

Silikat olmayan mineraller, doğal elementleri, sülfitleri, halojenürleri, oksitleri ve hidroksitleri, karbonatları ve nitratları, boratları, sülfatları, fosfatları ve organik bileşikleri içeren baskın kimyaları ile diğer bazı sınıflara ayrılır. Silikat olmayan mineral türlerinin çoğu nadirdir (yerkabuğunun toplam %8'ini oluşturur), ancak bazıları kalsit, pirit, manyetit ve Hematit gibi nispeten yaygındır. Silikatsızlarda gözlenen iki ana yapısal stil vardır: yakın paketleme ve silikat benzeri bağlantılı tetrahedra. yakın paketlenmiş yapılar, interstisyel alanı en aza indirirken atomları yoğun bir şekilde paketlemenin bir yoludur. Altıgen yakın paketleme, diğer her katmanın aynı olduğu istifleme katmanlarını ("ababab") içerirken, kübik yakın paketleme, üç tabakadan oluşan istifleme gruplarını ("abcabcabc") içerir. Bağlı silika tetrahedra analogları SO4 (sülfat), PO4 (fosfat), AsO4 (arsenat) ve VO4 (vanadat) içerir. Silikatlar, silikat minerallerinden daha fazla elementleri konsantre ettikleri için büyük ekonomik öneme sahiptir.100

Bugüne kadar minerallerin en büyük gruplama silikatlar vardır; çoğu kayalar daha büyük oluşur 95 % silikat mineraller, ve üzerinde 90 % yerkabuğunun bu minerallerin oluşmaktadır.101 Silikatların iki ana bileşeni, yer kabuğundaki en bol iki element olan silikon ve oksijendir. Silikat minerallerindeki diğer ortak elementler, Alüminyum, magnezyum, demir, kalsiyum, sodyum ve potasyum gibi Yerkabuğundaki diğer ortak elementlere karşılık gelir.102 Bazı önemli Kaya oluşturan silikatlar feldispat, kuvars, olivinler, piroksenler, amfiboller, granatlar ve mikaları içerir.

Silikatlar

Bir silikat mineralinin temel birimi [SiO4] 4-tetrahedrondur. Vakaların büyük çoğunluğunda, silikon oksijen ile dört kat veya tetrahedral koordinasyondadır. Çok yüksek basınçlı durumlarda, silikon, perovskite yapısında veya kuvars polimorf stishovit (SiO2) gibi altı kat veya oktahedral koordinasyonda olacaktır. İkinci durumda, mineral artık bir silikat yapısına sahip değildir, ancak rutil (TiO2) ve basit oksitler olan ilişkili grubuna sahiptir. Bu silika tetrahedra daha sonra tek boyutlu zincirler, iki boyutlu levhalar ve üç boyutlu çerçeveler gibi çeşitli yapılar oluşturmak için bir dereceye kadar Polimerize edilir. Tetrahedra'nın polimerizasyonunun gerçekleşmediği temel silikat minerali, baz 4 yükünü dengelemek için diğer elementleri gerektirir. Diğer silikat yapılarda, elde edilen negatif yükü dengelemek için farklı element kombinasyonları gereklidir. İyonik yarıçap ve şarjdaki benzerlik nedeniyle Si4+ ' nın al3 + ile ikame edilmesi yaygındır; bu durumlarda, [AlO4]5− tetrahedra, ikame edilmemiş tetrahedra ile aynı yapıları oluşturur, ancak şarj dengeleme gereksinimleri farklıdır.103

Polimerizasyon derecesi, hem oluşan yapı hem de kaç tane tetrahedral köşenin (veya Koordinatör oksijenin) paylaşıldığı (tetrahedral bölgelerdeki alüminyum ve silikon için) tanımlanabilir.104 Ortosilikatlar (veya nesosilikatlar) polyhedra'nın hiçbir bağlantısına sahip değildir, bu nedenle tetrahedra hiçbir köşeyi paylaşmaz. Disilikatlar (veya sorosilikatlar) bir oksijen atomunu paylaşan iki tetrahedraya sahiptir. İnosilikatlar zincir silikatlardır; tek zincirli silikatlar iki paylaşılan köşeye sahipken, çift zincirli silikatlar iki veya üç paylaşılan köşeye sahiptir. Fillosilikatlarda, üç paylaşılan oksijeni gerektiren bir tabaka yapısı oluşur; çift zincirli silikatlar durumunda, bazı tetrahedra, aksi takdirde bir tabaka yapısının ortaya çıkacağı için üç yerine iki köşeyi paylaşmalıdır. Çerçeve silikatlar veya tektosilikatlar, dört köşeyi paylaşan tetrahedra'ya sahiptir. Halka silikatlar veya siklosilikatlar, döngüsel yapıyı oluşturmak için iki köşeyi paylaşmak için sadece tetrahedra'ya ihtiyaç duyar.105

Silikat alt sınıfları, azalan polimerizasyon sırasına göre aşağıda açıklanmıştır.

Tektosilikatlar

Çerçeve silikatları olarak da bilinen tektosilikatlar, en yüksek polimerizasyon derecesine sahiptir. Bir tetrahedra'nın tüm köşeleri paylaşıldığında, silikon: oksijen oranı 1:2 olur. Örnekler kuvars, feldispat, feldspathoidler ve zeolitlerdir. Çerçeve silikatlar, güçlü kovalent bağların bir sonucu olarak özellikle kimyasal olarak kararlı olma eğilimindedir.106

Yerkabuğunun %12'sini oluşturan kuvars (SiO2) en bol mineral türüdür. Yüksek kimyasal ve fiziksel direnci ile karakterizedir. Kuvars, yüksek sıcaklıklarda tridimit ve cristobalite, yüksek basınçlı coesite ve ultra yüksek basınçlı stishovite dahil olmak üzere çeşitli polimorflara sahiptir. İkinci mineral sadece Dünya'da göktaşı etkileri ile oluşturulabilir ve yapısı o kadar çok oluşmuştur ki, bir silikat yapısından rutile (TiO2) dönüşmüştür. Dünya yüzeyinde en kararlı olan silika polimorfu α-kuvarstır. Muadili β-kuvars, sadece yüksek sıcaklıklarda ve basınçlarda bulunur(1 barda 573 °C'nin altındaki α-kuvars değişiklikleri). Bu iki polimorf, bağların "bükülmesi" ile farklılık gösterir; yapıdaki bu değişiklik, β-kuvars α-kuvartzdan daha büyük simetri verir ve bu nedenle yüksek kuvars (β) ve düşük kuvars (α) olarak da adlandırılır.107108

Feldispat, Yerkabuğundaki en bol gruptur ve yaklaşık %50'dir. Feldispatlarda, Al3+, katyonların eklenmesiyle hesaba katılması gereken bir yük dengesizliği yaratan Si4 + yerine geçer. Baz yapısı ya olur [AlSi3O8]− veya [Al2Si2O8] 2 – vardır 22 feldispat mineral türleri, iki ana alt gruba ayrılır-alkali ve plajiyoklaz - ve iki daha az yaygın gruplar – celsian ve banalsite. Alkali feldispatlar en çok potasyum bakımından zengin ortoklaz ve sodyum bakımından zengin albit arasında bir seride bulunur; plajiyoklaz durumunda, en yaygın seri albitten kalsiyum açısından zengin anortite kadar değişir. Kristal eşleştirme feldispatlarda, özellikle plajiyoklazda polisentetik ikizlerde ve alkali feldispatlarda Carlsbad ikizlerinde yaygındır. İkinci alt grup bir eriyikten yavaşça soğursa, ekssolüsyon lamelleri oluşturur, çünkü iki bileşen – ortoklaz ve albit – katı çözelti içinde kararsızdır. Exsolution el numunesinde kolayca gözlemlenebilir mikroskobik bir ölçekte olabilir; Perthitic doku formları zaman Na-zengin feldispat bir k-zengin konak exsolve. K açısından zengin feldispatın Na açısından zengin bir konakta çözdüğü karşıt doku (antipertitik) çok nadirdir.109

Feldspatoidler yapısal olarak feldspata benzerdir, ancak Al3+ile daha fazla ikame yapılmasına izin veren Si eksikliği koşullarında oluşmaları bakımından farklılık gösterir. Sonuç olarak, feldspatoidler kuvars ile ilişkilendirilemez. Bir feldspatoidin ortak bir örneği nefelindir ((Na, K) AlSiO4); alkali feldspat ile karşılaştırıldığında, nefelin feldspatta 1:6'nın aksine 1:2'lik bir Al2O3:SiO2 oranına sahiptir.110 Zeolitler genellikle iğneler, plakalar veya bloklu kütlelerde meydana gelen ayırt edici kristal alışkanlıklarına sahiptir. Düşük sıcaklıklarda ve basınçlarda su varlığında oluşurlar ve yapılarında kanallar ve boşluklar vardır. Zeolitler, özellikle atık su arıtımında çeşitli endüstriyel uygulamalara sahiptir.111

Fillosilikatlar

Fillosilikatlar Polimerize tetrahedra tabakalarından oluşur. Karakteristik bir silikon veren üç oksijen bölgesine bağlanırlar: 2: 5 oksijen oranı. Önemli örnekler arasında mika, klorit ve kaolinit-serpantin grupları bulunur. Tabakalar, van der Waals kuvvetleri veya hidrojen bağları ile zayıf bir şekilde bağlanır, bu da kristalografik bir zayıflığa neden olur ve bu da fillosilikatlar arasında belirgin bir bazal bölünmeye yol açar.112 tetrahedra'ya ek olarak, fillosilikatlar, negatif bir yüke sahip olan temel tetrahedrayı dengeleyen bir oktahedra tabakasına (oksijen ile altı kat koordinasyondaki elemanlar) sahiptir (örneğin [Si4O10]4−) Bu tetrahedra (T) ve oktahedra (O) tabakaları, fillosilikat grupları oluşturmak için çeşitli kombinasyonlarda istiflenir. Bir oktahedral levha içinde, bir birim yapısında üç oktahedral siteleri vardır; ancak, tüm siteler işgal edilebilir. Bu durumda, mineral dioctahedral olarak adlandırılır, diğer durumda ise trioctahedral olarak adlandırılır.113

Kaolinit-serpantin grubu, yığınlardan (1:1 kil mineralleri) oluşur; tabakalar hidrojen bağları tarafından tutulduğu için sertlikleri 2 ila 4 arasında değişir. 2: 1 kil mineralleri (pirofilit-talk) T-O-T yığınlarından oluşur, ancak bunlar van der Waals kuvvetleri tarafından bir arada tutulduğu için daha yumuşaktır (1'den 2'ye sertlik). Bu iki mineral grubu oktahedral mesleğe göre alt gruplardır; spesifik olarak, kaolinit ve pirofilit dioctahedral, serpantin ve talk trioctahedral'dır.114

Mica'lar ayrıca T-O-T-yığılmış fillosilikatlardır, ancak diğer T-O-T ve T-O-yığılmış alt sınıf üyelerinden farklıdır, çünkü tetrahedral tabakalara alüminyum dahil ederler (kil mineralleri oktahedral bölgelerde al3+ ' a sahiptir). Mikaların yaygın örnekleri muskovit ve biyotit serisidir. Klorit grubu mika grubu ile ilgilidir, ancak iki yığın arasında brusit benzeri (Mg(OH)2) bir katmandır.115

Kimyasal yapıları nedeniyle, fillosilikatlar tipik olarak elektrik izolatörleri olan ve çok ince pullara bölünebilen esnek, elastik, şeffaf katmanlara sahiptir. Mıcas, elektronikte izolatör olarak, inşaatta, optik dolgu maddesi olarak veya hatta kozmetik olarak kullanılabilir. Bir serpantin türü olan krizotil, endüstriyel asbestte en yaygın mineral türüdür, çünkü sağlık açısından amfibol asbestten daha az tehlikelidir.116

İnosilikatlar

İnosilikatlar, zincirlerle defalarca bağlanmış tetrahedradan oluşur. Bu zincirler tek olabilir, burada bir tetrahedron sürekli bir zincir oluşturmak üzere iki kişiye bağlanır; alternatif olarak, çift zincirli silikatlar oluşturmak için iki zincir birleştirilebilir. Tek zincirli silikatlar 1:3 (örneğin [Si2O6]4 -) bir silikon:oksijen oranına sahipken, çift zincirli çeşitlilik 4:11, örneğin [Si8O22]12-oranına sahiptir. İnosilikatlar iki önemli Kaya oluşturan mineral grubu içerir; tek zincirli silikatlar en yaygın olarak piroksenlerdir, çift zincirli silikatlar ise genellikle amfibollerdir.117 Yüksek mertebeli zincirler var (örneğin üç üyeli, dört üyeli, beş üyeli zincirler, vb. ama bunlar çok nadirdir.118

Piroksen grubu 21 mineral türünden oluşur.119 Pyroxenes, XY(Si2O6) genel bir yapı formülüne sahiptir, burada X bir oktahedral bölgedir, Y ise koordinasyon numarasında altı ila sekiz arasında değişebilir. Piroksen çeşitlerinin çoğu, omurgadaki negatif yükü dengelemek için Ca2+, Fe2+ ve Mg2 + permütasyonlarından oluşur. Pyroxenes yerkabuğunda yaygındır (yaklaşık %10) ve mafik magmatik kayaların önemli bir bileşenidir.120

Amfiboller kimyada büyük bir değişkenliğe sahiptir, çeşitli şekillerde "mineralojik çöp tenekesi" veya "elementlerin denizini yüzen mineralojik bir köpekbalığı"olarak tanımlanmaktadır. Amfibollerin omurgası [Si8O22] 12−; üçüncü pozisyon her zaman kullanılmamasına rağmen, üç olası pozisyonda katyonlarla dengelenir ve bir eleman kalan her ikisini de işgal edebilir. Son olarak, amfiboller genellikle hidratlanır, yani bir hidroksil grubuna ([OH]−) sahiptirler, ancak bir florür, bir klorür veya bir oksit iyonu ile değiştirilebilirler.121 değişken kimya nedeniyle, 80'den fazla amfibol türü vardır, ancak piroksenlerde olduğu gibi varyasyonlar en yaygın olarak Ca2+, Fe2+ ve Mg2 + karışımlarını içerir.122 birkaç amfibol mineral türü asbest benzeri bir kristal alışkanlığına sahip olabilir. Bu asbest mineralleri, kimyasal olarak inert ve ısıya dayanıklı, elektrik izolatörleri olan uzun, ince, esnek ve güçlü lifler oluşturur; bu nedenle, özellikle inşaat malzemelerinde çeşitli uygulamalara sahiptirler. Bununla birlikte, asbest kanserojen olarak bilinir ve asbest gibi çeşitli hastalıklara neden olur; amfibol asbest (antofilit, tremolit, aktinolit, grunerit ve riebeckite) krizotil serpantin asbestten daha tehlikeli olarak kabul edilir.123

Siklosilikatlar

Siklosilikatlar veya halka silikatlar, 1: 3'lük bir silikon oranına sahiptir. Altı üyeli halkalar en yaygın olanıdır, bir baz yapısı ile [Si6O18] 12 -; örnekler turmalin grubu ve beril içerir. Diğer halka yapıları var, ile 3, 4, 8, 9, 12 tarif edilmiştir.124 Siklosilikatlar, uzun, çizgili kristallerle güçlü olma eğilimindedir.125

Turmalinler, genel bir formül XY3Z6(BO3)3T6O18V3W ile tanımlanabilen çok karmaşık bir kimyaya sahiptir. T6O18, T'nin genellikle Si4+ olduğu, ancak Al3+ veya B3 + ile değiştirilebilen temel halka yapısıdır. Turmalinler, x bölgesinin doluluk oranı ile alt gruplandırılabilir ve oradan W bölgesinin kimyası ile alt bölümlere ayrılabilir. Y ve Z bölgeleri çeşitli katyonları, özellikle de çeşitli geçiş metallerini barındırabilir; yapısal geçiş metal içeriğindeki bu değişkenlik, turmalin grubuna renk bakımından daha fazla değişkenlik kazandırır. Diğer siklosilikatlar, çeşitleri zümrüt (yeşil) ve akuamarin (mavimsi) değerli taşları içeren beril, Al2Be3Si6O18 içerir. Kordierit yapısal olarak berile benzer ve yaygın bir metamorfik mineraldir.126

Sorosilikatlar

Sorosilicates, aynı zamanda vadeli disilicates,-oksijen tetrahedron yapıştırma için silikon 2:7 oranı sonucu bir oksijen tetrahedron de var. Elde edilen ortak yapısal eleman [Si2O7]6 grubudur. Şimdiye kadar en yaygın hayal kırıklığı epidot grubunun üyeleridir. Epidot jeolojik ortamlarda çeşitli bulunur, metapelitlere granitler orta okyanus sırt arasında değişen. Bölüm yapısı [(SiO4)(Si2O7)] 10-yapısı etrafında inşa edilmiştir; örneğin, mineral türleri epidot denge şarj etmek için kalsiyum, alüminyum ve ferrik demir vardır: Ca2Al2(Fe3+, Al) (SiO4) (Si2O7) O (OH). Fe3+ ve Fe2 + olarak demirin varlığı, oksijen fugasitesinin anlaşılmasına yardımcı olur ve bu da petrojenezde önemli bir faktördür.127

Sorosilikatların diğer örnekleri arasında, blueschist fasiyeslerinde (düşük sıcaklık ve yüksek basınçla yitim Bölgesi Ayarı) oluşturan bir metamorfik mineral olan lawsonite, kimyasal yapısında önemli miktarda kalsiyum alan vesuvianit bulunur.128129

==== Ortosilikatlar ==== Ortosilikatlar, diğer katyonlar tarafından şarj dengelenmiş izole tetrahedradan oluşur.130 Ayrıca nesosilikatlar olarak da adlandırılan bu silikat türü, 1:4'lük bir silikon: oksijen oranına sahiptir (örneğin SiO4). Tipik ortosilikatlar bloklu equant kristalleri oluşturma eğilimindedir ve oldukça zordur.131 Çeşitli Kaya oluşturan mineraller, alüminosilikatlar, olivin grubu ve granat grubu gibi bu alt sınıfın bir parçasıdır.

Alüminosilikatlar-bkyanit, andalusit ve sillimanit, tüm Al2SiO5 – yapısal olarak bir [SiO4]4− tetrahedron ve oktahedral koordinasyonda bir Al3+ ' dan oluşur. Kalan Al3 + altı kat koordinasyon (kiyanit), beş kat (andalusit) veya dört kat (sillimanit) olabilir; belirli bir ortamda hangi mineral formları basınç ve sıcaklık koşullarına bağlıdır. Olivin yapısında, ana olivin serisi (Mg, Fe) 2SiO4, magnezyum bakımından zengin forsterit ve demir bakımından zengin fayalitten oluşur. Hem demir hem de magnezyum oksijenle oktahedraldedir. Bu yapıya sahip diğer mineral türleri, tephroite, Mn2SiO4 gibi mevcuttur.132 granat grubu, X'in büyük bir sekiz kat koordineli katyon olduğu ve Y'nin daha küçük bir altı kat koordineli katyon olduğu genel bir x3y2(SiO4)3 formülüne sahiptir. İki gruba bölünmüş altı ideal son granat var. Piralspit granatlarının y konumunda Al3 + vardır: pirop (Mg3Al2 (SiO4) 3), almandin (Fe3Al2 (SiO4) 3) ve spessartin(Mn3Al2 (SiO4)3). Ugrandite granatlarının X konumunda Ca2 + vardır: uvarovite (Ca3Cr2 (SiO4) 3), grossular (Ca3Al2 (SiO4) 3) ve andradite(Ca3Fe2 (SiO4)3). İki alt granat grubu olsa da, altı son üye arasında katı çözümler bulunur.133

Diğer ortosilikatlar Zirkon, staurolit ve topaz içerir. Zirkon (ZrSiO4), zr4+ U6 + ile ikame edilebileceğinden jeokronolojide yararlıdır; ayrıca, çok dayanıklı yapısı nedeniyle, bir kronometre olarak sıfırlamak zordur. Staurolit, yaygın bir metamorfik orta dereceli indeks mineralidir. Sadece 1986'da tam olarak tarif edilen özellikle karmaşık bir kristal yapıya sahiptir. Turmalin ile ilişkili granitik pegmatitlerde sıklıkla bulunan Topaz (al2sio4(F, OH) 2, ortak bir taş mineralidir.134

Silikatlar

Yerli elemanlar

Doğal elementler, diğer elementlere kimyasal olarak bağlanmamış olanlardır. Bu mineral grubu, doğal metalleri, yarı metalleri ve metal olmayanları ve çeşitli alaşımları ve katı çözümleri içerir. Metaller, parlak metalik parlaklık, süneklik ve dövülebilirlik ve elektriksel iletkenlik gibi ayırt edici fiziksel özellikler sağlayan metalik bağ ile bir arada tutulur. Yerli elemanlar, yapıları veya kimyasal özellikleri ile gruplara ayrılır.

Kübik yakın paketlenmiş bir yapıya sahip olan altın grubu, altın, gümüş ve bakır gibi metalleri içerir. Platin grubu, yapı olarak altın grubuna benzer. Demir-nikel Grubu, birkaç demir-nikel alaşımı türü ile karakterize edilir. İki örnek, demir göktaşlarında bulunan kamasit ve taenittir; bu türler alaşımdaki Ni miktarına göre farklılık gösterir; kamasit %5-7 nikelden daha azdır ve çeşitli doğal demirdir, oysa taenitin nikel içeriği %7-37 arasında değişmektedir. Arsenik grubu mineralleri, sadece bazı metalik özelliklere sahip olan yarı metallerden oluşur; örneğin, metallerin dövülebilirliğinden yoksundurlar. Doğal karbon, iki allotropta, grafit ve elmasta oluşur; ikincisi, mantoda çok yüksek basınçta oluşur ve bu da grafitten çok daha güçlü bir yapı sağlar.135

Sülfürler

Sülfür mineralleri, bir veya daha fazla metalin veya bir kükürtlü semimetallerin kimyasal bileşikleridir; tellür, arsenik veya selenyum kükürtün yerini alabilir. Sülfitler, yüksek özgül ağırlığa sahip yumuşak, kırılgan mineraller olma eğilimindedir. Pirit gibi birçok toz sülfür, toz haline getirildiğinde sülfürlü bir kokuya sahiptir. Sülfitler hava koşullarına duyarlıdır ve birçoğu suda kolayca çözülür; bu çözünmüş mineraller daha sonra zenginleştirilmiş ikincil cevher yatakları oluşturan yeniden biriktirilebilir.136 Sülfitler, metal veya semimetalin kükürt oranına göre sınıflandırılır, örneğin M:S 2:1 veya 1: 1'e eşittir.137 birçok sülfit minerali metal cevherleri olarak ekonomik olarak önemlidir; örnekler arasında sfalerit (ZnS), bir çinko cevheri, galena (PbS), bir kurşun cevheri, cinnabar (HgS), bir cıva cevheri ve molibdenit (MoS2, bir molibden cevheri bulunur.138 Pirit (FeS2), en sık görülen sülfittir ve çoğu jeolojik ortamda bulunabilir. Bununla birlikte, bir demir cevheri değildir, ancak bunun yerine sülfürik asit üretmek için oksitlenebilir.139 sülfitler ile ilgili olarak, metalik bir elementin kükürt ve antimon, arsenik veya bizmut gibi bir semimetale bağlandığı nadir sülfosaltlardır. Sülfitler gibi, sülfosaltlar tipik olarak yumuşak, ağır ve kırılgan minerallerdir.140

Oksitler

Oksit mineralleri üç kategoriye ayrılır: basit oksitler, hidroksitler ve çoklu oksitler. Basit oksitler, ana anyon ve esas olarak iyonik bağ olarak O<sup>2−</sup> ile karakterize edilir. Oksijenin katyonlara oranı ile daha da alt bölümlere ayrılabilirler. Periklaz grubu 1:1 oranına sahip minerallerden oluşur. 2:1 oranına sahip oksitler arasında cuprite (Cu<sub>2</sub>O) ve su buzu bulunur. Korundum grubu mineralleri 2: 3 oranına sahiptir ve korundum (Al<sub>2</sub>O<sub>3</sub>), ve Hematit (Fe<sub>2</sub>O<sub>3</sub>)gibi mineralleri içerir. Rutil grubu mineralleri 1:2 oranına sahiptir; eponymous türler, rutil (TiO<sub>2</sub>) titanyumun baş cevheridir; diğer örnekler arasında cassiterit (sno2; kalay cevheri) ve pirolüzit (MnO<sub>2</sub>; manganez cevheri) bulunur.141142 Hidroksitlerde, baskın anyon hidroksil iyonudur, OH−. Boksitler baş alüminyum cevheridir ve hidroksit mineralleri diaspore, gibbsite ve bohmitin heterojen bir karışımıdır; çok yüksek oranda kimyasal ayrışma (özellikle tropikal koşullar) olan bölgelerde oluşurlar.143 Son olarak, çoklu oksitler oksijenli iki metalin bileşikleridir. Bu sınıftaki büyük bir grup, X<sup>2+</sup>Y<sup>3+</sup><sub>2</sub>O<sub>4</sub> genel formülü ile spinellerdir. Türlerin örnekleri spinel (MgAl<sub>2</sub>O<sub>4</sub>) , kromit (FeCr<sub>2</sub>O<sub>4</sub>), ve manyetit (Fe<sub>3</sub>O<sub>4</sub>) içerir. İkincisi, iki oksidasyon durumunda (Fe<sup>2+</sup>Fe<sup>3+</sup><sub>2</sub>O<sub>4</sub>), demire sahip olduğu için ortaya çıkan güçlü manyetizması ile kolayca ayırt edilebilir, bu da onu tek bir oksit yerine çoklu bir oksit yapar.144

Halidler

Halojenür mineralleri, bir halojenin (flor, klor, iyot veya brom) ana anyon olduğu bileşiklerdir. Bu mineraller yumuşak, zayıf, kırılgan ve suda çözünür olma eğilimindedir. Halojenürlerin yaygın örnekleri arasında Halit (NaCl, sofra tuzu), sylvite (KCl), florit (CaF<sub>2</sub>)bulunur. Halit ve sylvite yaygın olarak evaporitler oluşturur ve kimyasal tortul kayaçlarda baskın mineraller olabilir. Cryolite, Na<sub>3</sub>AlF<sub>6</sub>, boksitlerden alüminyumun çıkarılmasında önemli bir mineraldir; Bununla birlikte, Ivittuut'taki tek önemli olay olan Grönland, granitik bir pegmatitte tükendi, sentetik kriyolit floritten yapılabilir.145

Karbonatlar

Karbonat mineralleri, ana anyonik grubun karbonat, [CO<sub>3</sub>]<sup>2−</sup> olduğu minerallerdir. Karbonatlar kırılgan olma eğilimindedir, birçoğu rhombohedral bölünmeye sahiptir ve hepsi asitle reaksiyona girer.146 Son özellik nedeniyle, saha jeologları genellikle karbonatları karbonatlardan ayırmak için seyreltik hidroklorik asit taşırlar. Asidin en yaygın olarak polimorf kalsit ve aragonit (CaCO<sub>3</sub> )olarak bulunan karbonatlarla reaksiyonu, kireçtaşı mağaralarının oluşumunda bir anahtar olan mineralin çözünmesi ve çökelmesi ile ilgilidir, bunlar içinde sarkıt ve dikitler ve karst yer şekilleri gibi özellikler. Karbonatlar çoğunlukla deniz ortamlarında biyojenik veya kimyasal çökeller olarak oluşur. Karbonat grubu yapısal olarak merkezi bir C<sup>4+</sup> katyonunun üç O<sup>2−</sup> anyon ile çevrelendiği bir üçgendir; bu üçgenlerin farklı düzenlemelerinden farklı mineral grupları oluşur.147 En yaygın karbonat minerali, tortul kireçtaşı ve metamorfik mermerin birincil bileşeni olan kalsittir. Kalsit, CaCO<sub>3</sub>, yüksek magnezyum safsızlığına sahip olabilir. Yüksek Mg koşullar altında, polimorf aragonit bunun yerine oluşacaktır; bu bağlamda deniz jeokimyası, hangi mineralin tercihli olarak oluştuğuna bağlı olarak bir aragonit veya kalsit Denizi olarak tanımlanabilir. Dolomit, CaMg(CO<sub>3</sub>)<sub>2</sub>.formülü ile bir çift karbonattır. Kireçtaşının ikincil dolomitizasyonu yaygındır, burada kalsit veya aragonit dolomite dönüştürülür; bu reaksiyon gözenek alanını arttırır (dolomitin birim hücre hacmi kalsitin %88'idir), bu da petrol ve gaz için bir rezervuar oluşturabilir. Bu iki mineral türü, isimsiz mineral gruplarının üyeleridir: kalsit Grubu, Genel formül XCO<sub>3</sub>ile karbonatları içerir ve dolomit Grubu, Genel formül XY(CO<sub>3</sub>)<sub>2</sub>. ile mineralleri oluşturur.148

Sülfatlar

Sülfat minerallerinin tümü sülfat anyonunu içerir, [SO<sub>4</sub>]<sup>2−</sup>.. Yarı saydam, yumuşak ve birçoğu kırılgandır.149 Sülfat mineralleri genellikle buharlaşan tuzlu sulardan çökeldikleri evaporitler olarak oluştururlar. Sülfatlar ayrıca sülfitlerle ilişkili hidrotermal ven sistemlerinde,150 veya sülfitlerin oksidasyon ürünleri olarak da bulunabilir.151 Sülfatlar susuz ve sulu minerallere bölünebilir. En yaygın hidro sülfat, alçı, CaSO<sub>4</sub>⋅2H<sub>2</sub>O. bir evaporit olarak oluşur ve kalsit ve Halit gibi diğer evaporitlerle ilişkilidir; kristalleştikçe kum taneleri içeriyorsa, alçı çöl gülleri oluşturabilir. Alçı çok düşük ısı iletkenliğine sahiptir ve dehidrasyon ile bu ısıyı kaybettiği için ısıtıldığında düşük bir sıcaklığı korur; Bu nedenle, alçı sıva ve alçıpan gibi malzemelerde bir yalıtkan olarak kullanılır. Jipsin susuz eşdeğeri anhidrittir; çok kurak koşullarda doğrudan deniz suyundan oluşabilir. Barit grubu, X'in büyük bir 12 koordineli katyon olduğu genel formül XSO<sub>4</sub> 'e sahiptir. Örnekler barit (BaSO<sub>4</sub>), celestine (SrSO<sub>4</sub>),ve anglesite (PbSO<sub>4</sub>) içerir); anhidrit, daha küçük Ca<sup>2+</sup> sadece sekiz kat koordinasyonda olduğu için barit grubunun bir parçası değildir.152

Fosfatlılar

Fosfat mineralleri tetrahedral [PO4]3− birimi ile karakterize edilir, ancak yapı genelleştirilebilir ve fosfor antimon, arsenik veya vanadyum ile değiştirilir. En yaygın fosfat apatit grubudur; bu gruptaki ortak türler fluorapatit (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F), klorapatit(Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>Cl) ve hidroksilapatit (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>(OH)) dir. Bu gruptaki mineraller omurgalılardaki dişlerin ve kemiklerin ana kristal bileşenleridir. Nispeten bol miktarda monazit grubu, T'nin fosfor veya arsenik olduğu A ila 4 genel bir yapıya sahiptir ve A genellikle nadir toprak elementidir (REE). Monazite iki yönden önemlidir: birincisi, REE "bir lavabo" olarak, yeterince bu unsurlar bir cevher olmaya konsantre olabilir; ikincisi, monazite grup elemanları monazite 1998 yılında U ve Th kurşun çürüme dayalı rock tarihi için kullanılabilecek uranyum ve toryum nispeten büyük miktarda dahil edebilirsiniz.153

Organik mineraller

Strunz Sınıflandırması organik mineraller için bir sınıf içerir. Bu nadir bileşikler organik karbon içerir, ancak jeolojik bir işlemle oluşturulabilir. Örneğin, whewellite, CaC<sub>2</sub>O<sub>4</sub>⋅H<sub>2</sub>O hidrotermal cevher damarlarında birikebilen bir oksalattır. Hidratlı kalsiyum oksalat, kömür dikişlerinde ve organik madde içeren diğer tortul birikintilerde bulunabilirken, hidrotermal oluşumun biyolojik aktivite ile ilişkili olduğu düşünülmemektedir.154

Astrobiyoloji

Biyominerallerin dünya dışı yaşamın önemli göstergeleri olabileceği ve bu nedenle Mars gezegeninde geçmiş veya şimdiki yaşam arayışında önemli bir rol oynayabileceği öne sürülmüştür. Ayrıca, genellikle biominerals ile ilişkili organik bileşenlerin (biyoignatürlerin) hem ön biyotik hem de biyotik reaksiyonlarda önemli roller oynadığına inanılmaktadır.155

Mars'ta Merak ve opportunity rovers tarafından mevcut çalışmalar artık eski hayatın kanıt arıyoruz, bu antik nehir veya göl ile ilgili (plains) göl ortamları yaşanabilir olmuştur ototrof, chemotrophic ve/veya chemolithoautotrophic mikroorganizmaların yanı sıra antik su, fluvio dahil olmak üzere temel bir biyosfer dahil olacağı 24 Ocak 2014 tarihinde, NASA bildirdi.156157158159 Mars gezegenindeki yaşanabilirlik, taphonomy (fosillerle ilgili) ve organik karbon kanıtı arayışı şimdi birincil bir NASA hedefidir.160161

==Diğer bağlantılar ==

Kaynakça

Orijinal kaynak: mineral. Creative Commons Atıf-BenzerPaylaşım Lisansı ile paylaşılmıştır.

Footnotes

  1. Dyar, Gunter, and Tasa (2007). Mineralogy and Optical Mineralogy. Mineralogical Society of America. pp. 2–4. ISBN <bdi>978-0-939950-81-2</bdi>.

  2. "Mercury". Mindat.org. Retrieved 3 April 2018.

  3. "Ice ". Mindat.org. Retrieved 3 April 2018.

  4. Dyar, Gunter, and Tasa (2007). Mineralogy and Optical Mineralogy. Mineralogical Society of America. pp. 2–4. ISBN <bdi>978-0-939950-81-2</bdi>.

  5. Chesterman & Lowe 2008, pp. 13–14

  6. Dyar, Gunter, and Tasa (2007). Mineralogy and Optical Mineralogy. Mineralogical Society of America. pp. 2–4. ISBN <bdi>978-0-939950-81-2</bdi>.

  7. Mills, J.S.; Hatert, F.; Nickel, E.H.; Ferraris, G. (2009). "The standardisation of mineral group hierarchies: application to recent nomenclature proposals". European Journal of Mineralogy. 21 (5): 1073–80. Bibcode:[https://ui.adsabs.harvard.edu/abs/2009EJMin..21.1073M 2009EJMin..21.1073M] . doi:10.1127/0935-1221/2009/0021-1994.

  8. IMA divisions Archived 2011-08-10 at the Wayback Machine. Ima-mineralogy.org (2011-01-12). Retrieved on 2011-10-20.

  9. H.A., Lowenstam (1981). "Minerals formed by organisms". Science. 211 (4487): 1126–31. Bibcode:[https://ui.adsabs.harvard.edu/abs/1981Sci...211.1126L 1981Sci...211.1126L.] doi:10.1126/science.7008198. JSTOR 1685216. PMID 7008198.

  10. Skinner, H.C.W. (2005). "Biominerals". Mineralogical Magazine. 69 (5): 621–41. Bibcode [https://ui.adsabs.harvard.edu/abs/2005MinM...69..621S :2005MinM...69..621S.] doi:10.1180/0026461056950275.

  11. Nickel, Ernest H. (1995). "The definition of a mineral ". The Canadian Mineralogist. 33 (3): 689–90.

  12. "Working Group on Environmental Mineralogy and Geochemistry". Commissions, working groups and committees. International Mineralogical Association. 3 August 2011. Retrieved 4 April 2018.

  13. Takai, K. (2010). "Limits of life and the biosphere: Lessons from the detection of microorganisms in the deep sea and deep subsurface of the Earth.". In Gargaud, M.; Lopez-Garcia, P.; Martin, H. (eds.). Origins and Evolution of Life: An Astrobiological Perspective. Cambridge: Cambridge University Press. pp. 469–86. ISBN <bdi>978-1-139-49459-5</bdi>.

  14. Roussel, E.G.; Cambon Bonavita, M.; Querellou, J.; Cragg, B.A.; Prieur, D.; Parkes, R.J.; Parkes, R.J. (2008). "Extending the Sub-Sea-Floor Biosphere ". Science. 320 (5879): 1046. Bibcode:[https://ui.adsabs.harvard.edu/abs/2008Sci...320.1046R 2008Sci...320.1046R] . doi:10.1126/science.1154545. PMID 18497290.

  15. Pearce, D.A.; Bridge, P.D.; Hughes, K.A.; Sattler, B.; Psenner, R.; Russel, N.J. (2009). "Microorganisms in the atmosphere over Antarctica". FEMS Microbiology Ecology. 69 (2): 143–57. doi:10.1111/j.1574-6941.2009.00706.x. PMID 19527292.

  16. Newman, D.K.; Banfield, J.F. (2002). "Geomicrobiology: How Molecular-Scale Interactions Underpin Biogeochemical Systems". Science. 296 (5570): 1071–77. Bibcode:2002Sci...296.1071N. doi:10.1126/science.1010716. PMID 12004119.

  17. Warren, L.A.; Kauffman, M.E. (2003). "Microbial geoengineers". Science. 299 (5609): 1027–29. doi:10.1126/science.1072076. JSTOR 3833546. PMID 12586932.

  18. González-Muñoz, M.T.; Rodriguez-Navarro, C.; Martínez-Ruiz, F.; Arias, J.M.; Merroun, M.L.; Rodriguez-Gallego, M. (2010). "Bacterial biomineralization: new insights from Myxococcus-induced mineral precipitation". Geological Society, London, Special Publications. 336 (1): 31–50. Bibcode:2010GSLSP.336...31G. doi:10.1144/SP336.3.

  19. Veis, A. (1990). "Biomineralization. Cell Biology and Mineral Deposition. by Kenneth Simkiss; Karl M. Wilbur On Biomineralization. by Heinz A. Lowenstam; Stephen Weiner". Science. 247 (4946): 1129–30. Bibcode:1990Sci...247.1129S. doi:10.1126/science.247.4946.1129. JSTOR 2874281. PMID 17800080.

  20. Skinner, H.C.W. (2005). "Biominerals". Mineralogical Magazine. 69 (5): 621–41. Bibcode:2005MinM...69..621S. doi:10.1180/0026461056950275.

  21. Official IMA list of mineral names (updated from March 2009 list) 2011-07-06 at the Wayback Machine. uws.edu.au

  22. Bouligand, Y. (2006). "Liquid crystals and morphogenesis.". In Bourgine, P.; Lesne, A. (eds.). Morphogenesis: Origins of Patterns and Shape. Cambridge: Springer Verlag. pp. 49 ff. ISBN <bdi>978-3-642-13174-5</bdi>.

  23. Gabriel, C.P.; Davidson, P. (2003). "Mineral Liquid Crystals from Self-Assembly of Anisotropic Nanosystems". Topics in Current Chemistry. 226: 119–72. doi:10.1007/b10827.

  24. K., Hefferan; J., O'Brien (2010). Earth Materials. Wiley-Blackwell. ISBN <bdi>978-1-4443-3460-9</bdi>.

  25. Chesterman & Lowe 2008, pp. 15–16

  26. Chesterman & Lowe 2008, pp. 719–21

  27. Chesterman & Lowe 2008, pp. 747–48

  28. Chesterman & Lowe 2008, pp. 694–96

  29. Chesterman & Lowe 2008, pp. 728–30

  30. Dyar & Gunter 2008, p. 15

  31. Chesterman & Lowe 2008, p. 14

  32. Chesterman and Cole, pp. 531–32

  33. Chesterman & Lowe 2008, pp. 14–15

  34. Dyar & Gunter 2008, pp. 20–22

  35. Dyar & Gunter 2008, pp 558–59

  36. Pasero, Marco; et al. (January 2020). "The New IMA List of Minerals – A Work in Progress – Updated: January 2020" (PDF). The New IMA List of Minerals. IMA – CNMNC (Commission on New Minerals Nomenclature and Classification). from the original on 12 January 2020. Retrieved 1 March 2020.

  37. Harper, Douglas. "Online Etymology Dictionary". etymonline. Retrieved 28 March 2018.

  38. Wilk, H (1986). "Systematic Classification of Minerals" (Hardcover). In Wilk, H (ed.). The Magic of Minerals. Berlin: Springer. p. 154. doi:10.1007/978-3-642-61304-3_7. ISBN <bdi>978-3-642-64783-3</bdi>.

  39. Dyar & Gunter 2008, pp. 4–7

  40. Dyar & Gunter 2008, pp. 4–7

  41. Dyar & Gunter 2008, p. 585

  42. Dyar & Gunter 2008, pp. 12–17

  43. Dyar & Gunter 2008, p. 549

  44. Dyar & Gunter 2008, pp. 654–55

  45. Dyar & Gunter 2008, p. 166

  46. Dyar & Gunter 2008, pp. 41–43

  47. Chesterman & Lowe 2008, p. 39

  48. Dyar & Gunter 2008, pp. 32–39

  49. Chesterman & Lowe 2008, p. 38

  50. "Kiyanit" . Mindat.org . Erişim tarihi: 3 Nisan 2018 .

  51. Dyar ve Darby, s.26-28

  52. Busbey ve ark. 2007

  53. Dyar & Gunter 2008

  54. Dyar & Gunter 2008 , s. 131–44

  55. Busbey ve ark. 2007 , s. 72

  56. Dyar & Gunter 2008 , s. 24

  57. Dyar & Gunter 2008 , s.24-26

  58. Busbey ve ark. 2007 , s. 73

  59. Dyar & Gunter 2008 , s.39-40

  60. Chesterman & Lowe 2008 , s.29-30

  61. Chesterman & Lowe 2008 , s. 30–31

  62. Dyar & Gunter 2008 , s.31-33

  63. Dyar & Gunter 2008 , s. 30–31

  64. Dyar & Gunter 2008 , s.43-44

  65. Mindat.org . Erişim tarihi: 3 Nisan 2018

  66. "Galena" . Mindat.org . Erişim tarihi: 3 Nisan 2018

  67. "Kamasit" . Webmineral.com . Erişim tarihi: 3 Nisan 2018

  68. "Altın" . Mindat.org . Erişim tarihi: 3 Nisan 2018 .

  69. Dyar & Gunter 2008 , s.44-45

  70. "Mineral Tanımlama Anahtarı: Radyoaktivite, Manyetizma, Asit Reaksiyonları" . Amerika Mineraloji Derneği . 2012-09-22 tarihinde kaynağından arşivlendi . Erişim tarihi: 2012-08-15 .

  71. doi : 10.2451 / 2016PM590 .

  72. Dyar & Gunter 2008 , s. 641

  73. Dyar & Gunter 2008 , s. 681

  74. Dyar & Gunter 2008 , s. 641–43

  75. Dyar & Gunter 2008 , s. 104

  76. Dyar & Gunter 2008 , s. 5

  77. Dyar & Gunter 2008 , s. 105

  78. Dyar & Gunter 2008 , s. 104–17

  79. Chesterman ve Cole, s. 502

  80. Dyar & Gunter 2008 , s. 578–83

  81. Dyar & Gunter 2008 , s.558-88

  82. Dyar & Gunter 2008 , s. 588

  83. Dyar & Gunter 2008 , s. 589–93

  84. Chesterman & Lowe 2008 , s. 525

  85. Dyar & Gunter 2008 , s. 110

  86. Dyar & Gunter 2008 , s. 110–13

  87. Dyar & Gunter 2008 , s. 602-05

  88. Dyar & Gunter 2008 , s. 593–95

  89. Chesterman & Lowe 2008 , s. 537

  90. "09.D İnosilikatlar" . Webmineral.com . Erişim tarihi: 2012-08-20 .

  91. Dyar & Gunter 2008 , s. 112

  92. Dyar & Gunter 2008 s. 612–13

  93. Dyar & Gunter 2008 , s. 606–12

  94. Dyar & Gunter 2008 , s. 611–12

  95. Dyar & Gunter 2008 , s. 113–15

  96. Chesterman & Lowe 2008 , s. 558

  97. Dyar & Gunter 2008 , s.617-21

  98. Dyar & Gunter 2008 , s. 612–27

  99. Chesterman & Lowe 2008 , s. 565–73

  100. Dyar & Gunter 2008 , s. 116–17

  101. Chesterman & Lowe 2008 , s. 573

  102. Chesterman & Lowe 2008 , s.574-75

  103. Dyar & Gunter 2008 , s. 627–34

  104. Dyar & Gunter 2008 , s. 644–48

  105. Chesterman & Lowe 2008 , s. 357

  106. Dyar & Gunter 2008 , s. 649

  107. Dyar & Gunter 2008 , s. 651–54

  108. Dyar & Gunter 2008 , s. 654

  109. Chesterman & Lowe 2008 , s. 383

  110. Chesterman & Lowe 2008 , s. 400–03

  111. Dyar & Gunter 2008 , s. 657–60

  112. Dyar & Gunter 2008 , s.666-64

  113. Dyar & Gunter 2008 , s.660-63

  114. Chesterman & Lowe 2008 , s. 425–30

  115. Chesterman & Lowe 2008 , s. 431

  116. Dyar & Gunter 2008 , s. 667

  117. Dyar & Gunter 2008 , s.666-69

  118. Chesterman & Lowe 2008 , s. 453

  119. Chesterman & Lowe 2008 , s. 456–57

  120. Dyar & Gunter 2008 , s. 674

  121. Dyar & Gunter 2008 , s. 672–73

  122. Dyar & Gunter 2008 , s.675–80

Kategoriler